The Bridges of the Future or the Future of Bridges?

نویسنده

  • Joan Ramon Casas
چکیده

Infrastructures are a key factor for economy. Among them, transportation infrastructures are vital for human life and economy. And within the transportation networks, bridges are key elements for connecting people anddelivering goods. For this reason, bridges have been built sincemany centuries ago, in some way, and the advances (and sometimes geographical expansions!!) of ancient cultures all over the world have been related to their ability of constructing permanent bridges. The most representative of this could be the Roman Empire. After many centuries of bridge construction, nowadays we face a long history of experiences that allow us to look to the evolution of bridge engineering along years and, based on that, to try to extrapolate what is the most feasible to come in the next future. The evolution in bridge engineering has been strongly linked to the key advances in the following areas:materials, construction processes, andmodeling. Construction techniques and bridge typologies at the beginning were governed by the mechanical properties and performance of available materials at that time. In fact, when the available materials were stone and masonry (materials that work well in compression but not in tension), the characteristic bridge type was the arch and the construction process, the scaffolding of the complete structure, because the arch action needs the complete structure to develop. For centuries, the arch was the only available bridge type regarding permanent bridges. Of course, suspension and beam configurations were also available but normally with temporary use due to the durability limitations of materials working in tension (vegetal fibers) and bending (timber). Only the appearance in the nineteenth century of new materials as iron and steel, with the ability to resist tensile stresses allowed the birth of permanent suspension and girder bridges. Later on, the combination of a new material, concrete (similar to an artificial stone) and steel, forming reinforced and prestressed concrete made possible for the “new stone” to resist tensile actions and to join segments between them. Something that was not possible with the “old stone”!!. This resulted on an important revolution in the world of bridges. In fact, segmental bridge construction was born, linked to it, and a new group of construction techniques for concrete bridges: balanced cantilever, incremental launching, span-by-span. These new construction processes were also rapidly adopted by the steel bridges. Finally, already in the twentieth century, the use of the computer made affordable the accurate calculation and, therefore, the design and construction of highly redundant bridge types as cable-stayed bridges, and to model very complicate construction sequences. Since then, it seems like bridge engineering related to design and construction of bridges had reached a stationary point and no further relevant advances were envisaged. Bridge history shows us that for any substantial revolution (or let us say a “before” and an “after”) in the field, some relevant fact should occur. There has been a “before” and an “after” in bridge design and construction regarding the come into scene of concrete and steel. Since then, new materials have not appeared. Only recently, fiber reinforced plastics (FRP) were translated into bridge engineering from the aeronautical field. However, these new materials did not lead to relevant changes in bridge typologies or bridge construction schemes, being its main feature, their durability and high strength to weight ratio. There has been also a “before” and an “after” in-bridge construction since the appearance of prestressing. And, finally, there has been

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effect of Compressive Strength Reduction of Column Section Expose due to Freezing-Thawing Cycles on the Seismic Performance of Bridges

One of the serious damages of tremendous earthquakes is the damage to bridges as the major components in an    arterial road network, as relief operation is interrupted following cutting roads. Regardless of the magnitude and severity of an earthquake, other factors are also important in the strength and seismic performance of concrete bridges. Freezing-thawing cycles are among the factors, whi...

متن کامل

Strategic Planning for the National Bridge Stock of Iran

The National Bridge Stock of Iran consists of about 330,000 bridges, of which around 50% are older than 30 years. Since 2010, Iran Road Maintenance & Transportation Organization has started implementing a comprehensive Bridge Management System in order to manage this aged stock efficiently. To predict future conditions of bridge stock, a heuristic numerical method is presented. This methodology...

متن کامل

Probabilistic Evaluation of Seismic Performance of RC Bridges in Iran

 Many existing bridges were designed without adequate consideration of seismic risk. The full or partial collapse of even one major bridge in a city or community would have destroying results. There has been focuses on developing fragility-based seismic vulnerability of existing usual bridges in Iran or support decision making on seismic upgrade. This article focuses on developing performance b...

متن کامل

An Investigation on the Parameters Influencing the Pounding in Highway Bridges

The present aim of this study is to investigate the effect of different parameters influencing pounding in highway bridges. Pounding is the result of a collision between two parts of the deck and/or the deck and abutments at the separation distance during the earthquake.  In the present study, the period ratio of the adjacent frames, ground motion spatial variation, and soil-structure interacti...

متن کامل

Bridges Risk Analysis in View of Repair and Maintenance by Multi Criteria Decision Making Method (Case Study: Babolsar Bridges)

Bridges built from any material and having any special shape  will eventually show signs of wearing off; therefore, there are several factors in the kind and rate of such wearing off and its expansion such as atmosphere, flood, earthquake, overload, design quality, execution and kind of materials that will all reduce the functionality of the structures. Thus, maintaining processes and repairing...

متن کامل

Effect of Link Slab on Seismic Response of Two Span Straight and Skew Bridges

Highway bridges are frequently constructed as simple span structures with steel or concrete girders and a cast-in-place concrete deck, spanning from one pier to another. At each end of the simple span deck, a joint is provided for deck movement due to temperature, shrinkage, and creep. Bridge deck joints are expensive and pose many problems with regard to bridge maintenance. Elimination of deck...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015